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Abstract. In many person re-identification applications, typically on-
ly a small number of labeled image pairs are available for training. To
address this serious practical issue, we propose a novel semi-supervised
ranking method which makes use of unlabeled data to improve the re-
identification performance. It is shown that low density separation or
graph propagation assumption is not valid under some conditions in per-
son re-identification. Thus, we propose to iteratively select the most con-
fident matched (positive) image pairs from the unlabeled data. Since the
number of positive matches is greatly smaller than that of negative ones,
we increase the positive prior by selecting positive data from the top-
ranked matching subset among all unlabeled data. The optimal model
is learnt by solving a regression based ranking problem. Experimental
results show that our method significantly outperforms state-of-the-art
distance learning algorithms on three publicly available datasets using
only few labeled matched image pairs for training.

1 Introduction

Person re-identification under non-overlapping camera views has become an ac-
tive research topic due to its important applications in video surveillance sys-
tems, such as criminal detection, human tracking and behavior understanding
across camera views. This problem can be extremely challenging because varia-
tions of illumination condition, background, human pose, scale, etc., are usually
significant among disjoint camera views. Many research works [1]-[12] have been
developed to extract robust features invariant to deal with these variations. To
take advantage of label information of persons, discriminative learning methods
were employed in [13]-[20]. With person labels for training, matched (positive)
and unmatched (negative) image pairs are generated to learn the discriminative
models for the query image. Although the re-identification performance is im-
proved by supervised learning, these methods require a large number of positive
image pairs for training.

In large-scale camera networks containing (e.g.) hundreds of thousands of
cameras, it is extremely time-consuming and expensive to collect the label in-
formation of numerous training subjects from every camera. In this context, a
domain transfer support vector ranking method was proposed in [21] by adapt-
ing the classifier learnt from the source domain with plenty of label information
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to the target domain without any labels. To align the distribution mismatch
between the source and target domains, this domain transfer learning method
assumes that the target positive (matched image pairs) distribution can be rep-
resented by the target positive mean. While this assumption can simplify the
problem, it may degrade the performance when the assumption is not valid.

In this paper, we address the problem that only a small number of persons
are labeled to generate few positive image pairs for training. Under this sce-
nario, we develop a novel semi-supervised ranking algorithm which make use
of the unlabeled data to boost the re-identification performance. By analyzing
the data distribution of absolute difference vectors, we show that the widely
used low density separation and graph propagation assumptions in many semi-
supervised algorithms [22] [23] are not valid under some conditions in person re-
identification. Therefore, we follow the self training direction to iteratively label
the most confident positive image pairs from the unlabeled data. Since the num-
ber of positive matches is much smaller than that of negative ones, it is difficult
to correctly select the true positive image pairs with a small amount of positive
data. Therefore, we take advantages of properties in person re-identification and
increase the positive prior by selecting potential positive data from the rank-one
matching subset in all the unlabeled data. The optimal classification model is
learnt by solving a regression based ranking problem with the selected positive
data. The contributions of this paper are two-fold.

• We propose a new method to select positive image pairs for semi-supervised
learning in person re-identification under data imbalance problem. It is shown
that the positive prior in the rank-one matching subset is much larger than that
in all the unlabeled data due to properties in re-identification. Thus, we propose
to select the most confident positive matches from the rank-one matching subset
for higher positive prior, which gives higher precision in selecting positive image
pairs. On the other hand, we define a more robust confidence measure using
negative data generated under non-overlapping cameras to select the potential
positive data more accurately.

•We develop a novel semi-supervised ranking algorithm for person re-identifi-
cation using only a small number of positive image pairs for training. Based on
the potential positive image pairs selected from the unlabeled data, we formulate
the ranking problem by least-square regression and propose an efficient updating
method to determine the optimal solution. Since the proposed method updates
the classification model iteratively, the classification model becomes more dis-
criminative with iteration to better select the potential positive data.

The rest of the paper is organized as follows. Section 2 provides a brief review
on person re-identification and semi-supervised learning. Section 3 reports the
proposed Semi-Supervised Ranking method with Increased Positive Prior (SSR-
IPP). Experimental results are given in Section 4. Finally, Section 5 concludes
the paper.
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2 Related Works

2.1 Supervised and Semi-Supervised Person Re-Identification

To take advantages of person labels, many existing supervised re-identification al-
gorithms [14, 16–18, 20] convert the multi-class person identification problem into
a two-class matching problem by training a unified classification model for differ-
ent individuals. In [14], the Ranked Support Vector Machines (RSVM) model was
employed to assign higher confidence to the positive image pairs and vice versa.
To exploit higher-order correlations among features, Zheng et al. [17] proposed
a Relative Distance Comparison (RDC) method using second-order distance
learning. For solving the computational complexity issue, a Relaxed Pairwise
Metric Learning (RPML) method was proposed in [16] by relaxing the original
hard constraints, which leads to a simpler problem that can be solved more effi-
ciently. On the other hand, more recently, there have been some research works
on semi-supervised learning for person identification or re-identification [24–26].
While these methods employed the concept of semi-supervised learning, they did
not address the problem that only a small number of matched image pairs are
available to train a discriminative re-identification model.

2.2 Semi-Supervised Learning

Semi-supervised learning attempts to train a better classification model by in-
corporating a small amount of labeled data with a large amount of unlabeled
data. Many semi-supervised learning algorithms were developed based on low
density separation or graph propagation assumption [22, 23]. Under low density
separation assumption, it is believed that the classification boundary lies in the
low density region within which there are few data points. For the graph prop-
agation approach, a regularization term is added to the objective function for
the smoothness of the classification model. Besides classification, semi-supervised
learning has been employed for ranking in information retrieval. Semi-supervised
ranking methods were proposed in [27] based on low density separation assump-
tion and [28] based on graph propagation approach. However, they do not take
full advantages of the available information and it is shown by our analysis that
these assumptions are not valid under some conditions in person re-identification.

3 Proposed Method

For clear presentation, we consider the re-identification task for images from a
pair of cameras a and b. For multiple cameras, multiple classification models can
be trained for each camera pair. As indicated in [17], the absolute difference space
shows some advantages over the common difference space, so we use the Absolute
Difference Vector (ADV) as the feature representation method for both positive
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and negative image pairs. Given two feature vectors xa
i and x b

j representing two
images under cameras a and b, respectively, the ADV z ij is defined by

z ij = d(xa
i − x b

j) = (|xa
i (1)− x b

j(1)|, · · · , |xa
i (R)− x b

j(R)|)T (1)

where x (r) is the r-th element of feature vector x and R is the dimension of x .
Given a small number of labeled person images under both cameras a and b

for training, positive image pairs can be constructed for yai = ybj , where yai and

ybj are person labels of feature vectors xa
i and x b

j , respectively. Denote positive

ADVs as z+
ij . Similarly, negative ADVs z−

ik can be obtained for yai ̸= ybk. On the
other hand, we are given a large number of unlabeled person images under both
cameras and their ADVs are denoted by zu

mn. Since the same person cannot be
presented at the same instant under different non-overlapping cameras a and b,
negative image pairs can be obtained for each unlabeled feature vector xa

m or x b
n.

This means we can easily get some negative ADVs from the unlabeled images
and denote them as z−

mk and z−
ln. Therefore, the key problem is to determine

the potential positive image pairs from the unlabeled ones.

3.1 Data Distribution Analysis in Person Re-Identification

Let us consider the distance between a positive ADV z+
ij and an unlabeled one

zu
mn. According to the definition given by (1), we have

∥z+
ij − zu

mn∥p =

(
R∑

r=1

∣∣|xa
i (r)− x b

j(r)| − |xa
m(r)− x b

n(r)|
∣∣p) 1

p

(2)

where ∥ · ∥p denotes lp norm. To show that the low density assumption may not
be valid, we consider the unlabeled ADV zu

mn for yam ̸= ybn. In this case, zu
mn

is negative. And, the difference between the r-th elements of feature vectors xa
m

and x b
n could be large, i.e., |xa

m(r)− x b
n(r)| is a large number. If the difference

between xa
i (r) and x b

j(r) is small for positive image pair, we have the conclusion

that the distance between z+
ij and zu

mn is large by (2) for yam ̸= ybn. However,

it cannot be guaranteed that |xa
i (r)− x b

j(r)| for yai = ybj is significantly smaller

than |xa
m(r)−x b

n(r)| for yam ̸= ybn, since feature vectors x
a
i and x b

j are extracted

from images under non-overlapping camera views. Thus, |xa
i (r) − x b

j(r)| could
be large. Due to the large amount of negative image pairs, it is likely that there
exists zu

mn for yam ̸= ybn such that the distance between z+
ij and zu

mn is small,
i.e.,

∃zu
mn, s.t. ∥z+

ij − zu
mn∥p ≤ ε, yam ̸= ybn (3)

where ε is a small positive number. This equation means that for each positive
ADV z+

ij there are probably some negative ones around them. Therefore, the
low density region separating the positive and negative data does not exist. This
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means the low density separation assumption in many semi-supervised learning
methods is not valid under this condition in person re-identification.

On the other hand, for the positive ADVs from the unlabeled data, i.e.,
yam = ybn, we expand the element-wise difference in (2) as follows,∣∣|xa

i (r)− x b
j(r)| − |xa

m(r)− x b
n(r)|

∣∣
=

{
|(xa

i (r)− xa
m(r)) + (x b

n(r)− x b
j(r))|, (xa

i (r)− x b
j(r))(x

a
m(r)− x b

n(r)) ≥ 0

|(xa
i (r)− x b

n(r)) + (xa
m(r)− x b

j(r))|, (xa
i (r)− x b

j(r))(x
a
m(r)− x b

n(r)) < 0

(4)

Let us consider the first case in (4), i.e., (xa
i (r)− x b

j(r))(x
a
m(r)− x b

n(r)) ≥ 0. If

there exists r0 such that the signs of xa
i (r0) − xa

m(r0) and x b
n(r0) − x b

j(r0) are

the same, i.e., (xa
i (r0)− xa

m(r0))(x
b
n(r0))− x b

j(r0)) ≥ 0, we have

|(xa
i (r0)− xa

m(r0)) + (x b
n(r0)− x b

j(r0))|
=|xa

i (r0)− xa
m(r0)|+ |x b

n(r0)− x b
j(r0))|

(5)

Denote the value of (5) as λ. Since persons in the unlabeled set are likely to
be different from the ones in the labeled set using few labeled image pairs, the
absolute differences |xa

i (r0)− xa
m(r0)| and |x b

n(r0)− x b
j(r0)| could be large due

to different identities (though the differences are calculated for feature vectors
from the same camera). Therefore, the element-wise difference λ of (5) is a large
number, which implies the distance between z+

ij and zu
mn for yam = ybn is large

by (2). Similarly, for the second case that (xa
i (r)−x b

j(r))(x
a
m(r)−x b

n(r)) < 0, the

norm ∥z+
ij−zu

mn∥p is large, if there exists r0 such that (xa
i (r0)−x b

n(r0))(x
a
m(r0)−

x b
j(r0)) ≥ 0. Under this condition, the distances between z+

ij and zu
mn are large

for any yai = ybj in the labeled set and yam = ybn in the unlabeled set, i.e.,

∥z+
ij − zu

mn∥p ≥ λ, ∀yai = ybj , y
a
m = ybn, y

a
i ̸= yam (6)

In this case, the positive information from the labeled data cannot be propagated
to the unlabeled data. As a results, the graph propagation assumption cannot
be employed under this condition in person re-identification.

Based on the above analysis, we follow the self training approach to iteratively
label the most confident positive image pairs from the unlabeled data which will
be discussed in the following sections.

3.2 Selecting Potential Positive Data by Increasing Positive Prior

Given a classification model f on the ADVs, one way to determine the positive
data is to label the potential positive image pairs with very high scores, i.e.,

Ê+ = {zu
mn|f(zu

mn) ≥ θ} (7)
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where Ê+ denotes the set of potential positive ADVs selected from the unlabeled
data and θ is a threshold for the selection. However, according to (3), the region
with high confidence may contain both positive and negative image pairs. On
the other hand, according to (6), the scores of positive image pairs do not change
continuously. This means not all the positive ADVs give very high confidence
scores. Consequently, it may not be a good strategy to label positive image pairs
from the unlabeled data using (7).

To deal with this problem, we propose to take advantages of properties in
person re-identification and define a better confidence measure ρ by both the
classification function f and negative data z−

mk and z−
ln generated under non-

overlapping camera views. If the score difference between zu
mn and the negative

data is larger, zu
mn is more likely to be a positive ADV. Thus, we normalize the

scores and define a new confidence measure ρ for the unlabeled ADVs as,

ρ(zu
mn) =

f(zu
mn)

max
(
maxk f(z

−
mk),maxl f(z

−
ln)
) , (8)

On the other hand, with information about the cameras, we can group the
unlabeled data according to the camera indexes, i.e.

Gm· = {zu
mn = d(xa

m − x b
n)|∀x b

n}, G·n = {zu
mn = d(xa

m − x b
n)|∀xa

m} (9)

To reduce the proportion of negative matches, we select only one ADV from each
Gm· or G·n to obtain a set E1, i.e.

E1 ={zu
mn′ = arg max

zu
mn∈Gm·

ρ(zu
mn)} ∪ {zu

m′n = arg max
zu
mn∈G·n

ρ(zu
mn)} (10)

According to the definition in (10), E1 contains the best match for each xa
m under

camera a or x b
n under camera b by the classification function f . Although there

may be more than one positive ADVs in each group Gm· or G·n, the selected one
can be representative for others due to the following reasons. Denote two positive
ADVs in Gm· as z

+
mn1

and z+
mn2

. According to the definition of difference vector
given by (1) and the expanded difference in (4), it has

∥z+
mn1

− z+
mn2

∥ ≤ ∥x b
n1

− x b
n2
∥ (11)

Since both z+
mn1

and z+
mn2

are positive, the person labels ybn1
and ybn2

are equal to
yam. This means feature vectors x b

n1
and x b

n2
are extracted from the same person

under the same camera view b. Since the variation under the same camera view
must be small, the difference between z+

mn1
and z+

mn2
is small according to (11).

This implies any positive ADV in a group Gm· is representative for others in
this group. Similarly, this conclusion is also true for group G·n. Thus, it is good
enough to select only one positive ADV from each group.

More importantly, we further show that the positive prior in E1 is much larger
than that in all the ADVs. Let c1 be the rank one accuracy obtained by f , J be
the number of persons under both camera views, Ja(≥ J) and Jb(≥ J) be the
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numbers of persons under cameras a and b, respectively. It has (See Appendix)

τ ≈ J

JaJb
, τ1 ≥ Jc1

max(Ja, Jb)
. If max(

1

Ja
,
1

Jb
) ≪ c1, then τ ≪ τ1 (12)

where τ is the percentages of the positive data in all the image pairs and τ1 is
the positive prior in E1. Since the number of persons is usually very large in
person re-identification, both 1/Ja and 1/Jb are very small numbers. On the
other hand, using a classification function to obtain the rank one accuracy c1
should be much better than a random guess with rank one accuracy 1/Ja or
1/Jb. Therefore, the condition in (12) can be satisfied easily. This means the
positive prior τ can be increased to τ1 by only considering rank one matches in
E1. And, it is easier to correctly label a positive image pair from the unlabeled
data with higher positive prior.

Since the rank one accuracy c1 is not very large in person re-identification,
there are still many negative ADVs in E1. Consequently, we select only one
potential positive ADV ẑ+

mn in E1 with the highest score in each iteration, i.e.

ẑ+
mn = arg max

zu
mn∈E1

ρ(zu
mn) (13)

3.3 Ranking by Regression

Since each positive ADV z+
ij should be ranked before its corresponding negative

ones z−
ik and z+

lj , we learn a weight vector w such that wT z+
ij > wT z−

ik and

wT z+
ij > wT z−

lj . To preserve the ranking relationship, we set wT (z+
ij −z−

ik) ≈ 1

and wT (z+
ij − z−

lj) ≈ 1 for regression. Then, the optimal weight vector w can be
learnt by solving the following least square regression problem,

min
w

∑
i,j,k

(
wT (z+

ij − z−
ik)− 1

)2
+
∑
j,i,l

(
wT (z+

ij − z−
lj)− 1

)2
+ µwTw (14)

where µ is a positive parameter for the regularization term to prevent from over-
fitting. This optimization problem can be solved by taking the first derivative to
zero, and hence the optimal solution w∗ is given by

w∗ = (H + µI)−1h ,h =
∑
i,j,k

(z+
ij − z−

ik) +
∑
j,i,l

(z+
ij − z−

lj)

H =
∑
i,j,k

(z+
ij − z−

ik)(z
+
ij − z−

ik)
T +

∑
j,i,l

(z+
ij − z−

lj)(z
+
ij − z−

lj)
T

(15)

where I denotes the unit matrix. According to the solution given by (15), we
do not need to save all the positive and negative ADVs. Once a potential posi-
tive ADV is selected from the unlabeled data, we can simply update H and h ,
which will be described in the following section. This ensures that the proposed
regression based ranking method is computationally efficient.
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Algorithm 1 Training procedure of SSR-IPP

Input: Positive ADVs z+
ij , negative ADVs z−

ik, z
−
mk, z

−
ln, unlabeled ADVs zu

mn,
parameter µ, number of selected positive ADVs Q, unsupervised classifier g;

1: Compute H, h and w in (15) by z+
ij , z

−
ik and z−

lj ;
2: Calculate confidence scores for each unlabeled ADV zu

mn by w and g;
3: Construct the rank one matching set E1;
4: for t = 1, · · · , Q do
5: Calculate confidence scores for each zu

mn in E1 by w and g;
6: Select one potential positive ADV ẑ+

mn by (13);
7: Update H, h by (16) and w by (15);
8: Delete ẑ+

mn from E1;
9: end for
Output: Optimal weight vector w∗.

3.4 Iterative Semi-Supervised Ranking

According to the analysis in Section 3.1, we follow the self training approach
to iteratively label potential positive ADVs and re-train the weight vector w .
At iteration t, we have calculated Ht, h t and w t. With w t, we can determine
the classification function ft by ft(z

u
mn) = wT

t z
u
mn. Since w t may over-fit the

training data when the number of positive image pairs is very small, we propose
to define ft by adding an unsupervised classification model g, i.e., ft(z

u
mn) =

wT
t z

u
mn + g(zu

mn). Then, we select one potential positive ADV ẑ+
mtnt

in E1

by (13) and Ht, h t can be updated by the following equations,

Ht+1 = Ht +
∑
k

(ẑ+
mtnt

− z−
mtk

)(ẑ+
mtnt

− z−
mtk

)T

+
∑
l

(ẑ+
mtnt

− z−
lnt

)(ẑ+
mtnt

− z−
lnt

)T

h t+1 = h t +
∑
k

(ẑ+
mtnt

− z−
mtk

) +
∑
l

(ẑ+
mtnt

− z−
lnt

)

(16)

With Ht+1 and h t+1, we can compute w t+1 by (15). After that, ẑ+
mtnt

is deleted
from E1 for the next iteration. Algorithm 1 summarizes the proposed Semi-
Supervised Ranking method with Increased Positive Prior (SSR-IPP).

4 Experiments

4.1 Datasets

Three publicly available datasets, namely VIPeR1 [29], PRID2 [30] and CUHK3 [18],
are used for evaluation of the proposed method. Example images in these three

1 http://soe.ucsc.edu/~dgray/VIPeR.v1.0.zip
2 https://lrs.icg.tugraz.at/datasets/prid/
3 http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
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datasets are shown in Figure 1(a), Figure 1(b) and Figure 1(c), respectively.
VIPeR is a re-identification dataset containing 632 person image pairs captured
by two cameras outdoor. In this dataset, 632 image pairs are randomly separat-
ed into half for training and the other half for testing. PRID dataset consists
of person images from two static surveillance cameras. Total 385 persons were
captured by camera A, while 749 persons captured by camera B. The first 200
persons appeared in both cameras, and the remainders only appear in one camer-
a. In our experiments, the single-shot version is used, in which at most one image
of each person from each camera is available. 100 out of the 200 image pairs are
randomly selected as the training set, and the others for testing. CUHK dataset
contains five camera pairs. Under each camera view, there are two images for
each person. Following the single shot setting in [18], images from camera pair
one with 971 persons are used for experiments. On this dataset, 971 persons are
randomly split as 485 for training and 486 for testing. For the testing data in
VIPeR, PRID or CUHK, the evaluation is performed by searching the 316, 100
or 486 persons in one camera view from another view. These experiments were
performed ten times and the average results are reported.

(a) VIPeR (b) PRID (c) CUHK

Fig. 1. Sample images and masked results on three datasets: (a) VIPeR [29], (b) PRID
[30] and (c) CUHK [18].

For each image in these datasets, we concatenate two types of features as
the input feature vector. The first type of feature is constructed by dividing a
person image into six horizontal stripes and compute the RGB, YCbCr, HSV
color features and two types of texture features extracted by Schmid and Gabor
filters on each stripe as reported in [13, 14, 17]. For the second type of feature, we
perform foreground detection to detect the human pixels by the spatial hierarchy
pose estimation method [31] with source code online4. Example masked results
are shown in Figure 1(a), Figure 1(b) and Figure 1(c) for VIPeR, PRID and
CUHK datasets, respectively. Then, the masked person image is divided into
3× 1 vertically overlapped boxes and the code5 in [11] are used to extract color
histogram and SIFT features on each box.

4 http://www.cs.cmu.edu/~ILIM/projects/IM/humanpose/humanpose.html
5 http://mmlab.ie.cuhk.edu.hk/projects/project_salience_reid/index.html
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4.2 Evaluation of SSR-IPP

In our experiments, we use l1 distance in the unsupervised classification model
g and empirically set µ = 1. Without the time acquisition information in the
PRID, VIPeR and CUHK datasets, negative image pairs from non-overlapping
cameras are generated by simulating the synchronization using label information.
Ten negative image pairs are randomly generated for each unlabeled person im-
age. We first show the precisions for labeling the positive data, i.e., the number
of true positive ADVs divided by the number (Q) of selected potential positive
ADVs. The results are shown in Figures 2(a)-2(c) for VIPeR, Figures 2(d)-2(f)
for PRID and Figures 2(g)-2(i) for CUHK dataset. For each dataset, we use
different numbers (L = 5, 10, 20) of labeled positive image pairs to evaluate the
performance. Our method by Increasing Positive Prior (IPP) is compared with
the direct selection approach given by (7) which selects the ADVs with top clas-
sification scores as positive. From Figures 2(a)-2(i), we can see that our method
remarkably outperforms the direct selection approach with different numbers
(L) of labeled positive image pairs on the three datasets. Thus, our method can
achieve better re-identification performance by correctly selecting more (true)
positive ADVs for training compared with the direct selection approach.

On the other hand, from Figures 2(a)-2(i), we can see that the positive la-
beling precision drops when the number (Q) of selected potential positive ADVs
increases. This means more ADVs are wrongly labeled when Q is large. How-
ever, if Q is too small, we may not have enough labeled data to train a robust
model for re-identification. To evaluate the relationship between Q and the re-
identification performance, we plot the rank one accuracy for varying Q on the
three datasets in Figures 2(a)-2(i), respectively. From these figures, we can see
that when Q is large, the rank one accuracy does not drop very much, though the
precision for selecting potential positive ADVs drops significantly as shown in
Figures 2(a)-2(i). This may be due to that the corresponding negative ADVs are
correctly labeled under non-overlapping cameras. Moreover, Figures 3(a)-3(c)
show that the rank one accuracy can be increased by training with the potential
positive ADVs selected from the unlabeled data. For example, when the number
(L) of labeled image pairs is equal to five, the improvement by selecting potential
positive ADVs is extremely significant. The rank one accuracies on these three
datasets for L = 5 and Q = 20 are over two times higher than those using only
few labeled image pairs for training. These results indicate that it becomes more
important to learn from unlabeled data for person re-identification when only a
small number of persons are labeled for training.

4.3 Comparison with Existing Methods

In this section, we compare the proposed method with two state-of-the-art dis-
tance learning methods for person re-identification, namely Ranked Support Vec-
tor Machines (RSVM) [14] and Relative Distance Comparison (RDC) [17]. We
have re-implemented these two methods. In our implementation, the parameter
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(a) L = 5 on VIPeR (b) L = 10 on VIPeR (c) L = 20 on VIPeR

(d) L = 5 on PRID (e) L = 10 on PRID (f) L = 20 on PRID

(g) L = 5 on CUHK (h) L = 10 on CUHK (i) L = 20 on CUHK

Fig. 2. Precisions for labeling positive ADVs by Increasing Positive Prior (IPP) and
Direct Selection with varying numbers (Q) of selected potential positive ADVs on
(a)-(c) VIPeR [29], (d)-(f) PRID [30] and (g)-(i) CUHK [18]

(a) VIPeR (b) PRID (c) CUHK

Fig. 3. Rank one accuracy for varying numbers (Q) of selected potential positive ADVs
on 3 data sets: (a) VIPeR [29], (b) PRID [30] and (c) CUHK [18].

C in RSVM is empirically set as 1 for robust performance. According to the re-
sults shown in Figures 3(a)-3(c), we set the number of potential positive ADVs
as Q = 20 on PRID, Q = 30 on VIPeR and CUHK datasets.
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(a) L = 5 on VIPeR (b) L = 10 on VIPeR (c) L = 20 on VIPeR

(d) L = 5 on PRID (e) L = 10 on PRID (f) L = 20 on PRID

(g) L = 5 on CUHK (h) L = 10 on CUHK (i) L = 20 on CUHK

Fig. 4. CMC curves with different numbers (L = 5, 10, 20) of labeled image pairs on 3
datasets: (a)-(c) VIPeR [29], (d)-(f) PRID [30] and (g)-(i) CUHK [18].

The CMC curves on VIPeR, PRID and CUHK datasets are shown in Fig-
ures 4(a)-4(c), Figures 4(d)-4(f) and Figures 4(g)-4(i), respectively. From these
figures, we can see that the re-identification performance degrades significant-
ly when only few labeled positive image pairs, e.g., L = 5, 10, 20, are used for
training. When all the training data are labeled, i.e., L = All, RSVM and RD-
C achieve around 70% rank one accuracy on VIPeR dataset as shown in Fig-
ure 4(a)6. However, when using only five labeled positive image pairs for training,

6 Note that the feature used in our experiments is different from those in existing
methods. It is very discriminative for VIPeR dataset, so it can achieve 70% rank one
accuracy using 316 matched image pairs for training. Such good performance may
be due to the combination of foreground detection and global?feature extraction (on
a large region of an image) which is very effective for VIPeR dataset. It is interesting
to conduct further investigation on this issue, but it is not the focus of this paper.
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the rank one accuracy degrades to about 20% by RSVM and 30% by RDC. This
means the degradation of rank one accuracy can be up to about 50% by RSVM
and 40% by RDC. The reason for these results is, the distance learning meth-
ods are over-fitted for the small amount of labeled data. Although both RSVM
and RDC have a significant performance degradation, it is interesting to see in
Figures 4(a)-4(i) that RDC outperforms RSVM on the three datasets when the
number of available labels is small. This indicates that RDC has better gener-
alization ability by utilizing the advantages of second-order distance when few
labeled data are available for training.

Comparing the proposed method with RSVM and RDC for L = 5, 10, 20,
our method achieves significantly better ranking performance as shown in Fig-
ures 4(a)-4(i). On VIPeR dataset, the rank one accuracy of our method is above
20% higher than that of RSVM or RDC when the number of labeled positive
image pairs are less than or equal to ten, i.e., L = 5, 10. This indicates that
our method can significantly improve the performance for re-identification by
using unlabeled data. On the other hand, Figure 4(c) on VIPeR and Figure 4(f)
on PRID show that the CMC curves of our method using only 20 labeled pos-
itive image pairs are close to those of RSVM and RDC using all the labeled
training data. These results indicate that our method can achieve convincing
performance for person re-identification only with few labeled positive image
pairs, which helps reduce the expensive cost needed for manual labeling.

5 Conclusion

In this paper, we have developed a novel Semi-Supervised Ranking method with
Increased Positive Prior (SSR-IPP) for person re-identification using only few
labeled positive image pairs. By analyzing the data distribution properties in
person re-identification, we show that the widely used low density separation
and graph propagation assumptions are not valid under certain conditions. In
this context, we propose to iteratively add the most confident potential positive
Absolute Difference Vector (ADV) from the unlabeled data for training. Since it
suffers from a severe data imbalance problem in person re-identification, i.e., the
number of positive image pairs is much smaller than that of negative ones, it is
more likely to select a negative ADV from the unlabeled data. To increase the
positive prior, we select the potential positive ADVs from the rank one matching
subset in all the unlabeled data. Adding the selected potential positive ADVs to
the regression based ranking problem, the confidence measure and weight vector
are updated iteratively for the optimal solution.

Experimental results demonstrate that our method significantly outperforms
state-of-the-art distance learning methods using only a small number of labeled
positive image pairs for training. For example, the rank one accuracy of SSR-IPP
is above 20% higher than that of RSVM or RDC when the number of labeled
positive image pairs are less or equal to ten. On the other hand, it is shown
that the re-identification performance deteriorates dramatically when the num-
ber of labels is very small for training by existing methods. Since our method
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achieves convincing performance for re-identification with few matched image
pairs, it can help reduce the expensive efforts needed for manual labeling. More-
over, our experiments also show that the second-order distance based Relative
Distance Comparison (RDC) [17] method has better generalization ability than
the first-order distance based Ranking Support Vector Machines (RSVM) [14]
when the number of labeled positive image pairs is small. Since the proposed
method is based on first-order distance, it is promising to study the develop-
ment of second-order distance based semi-supervised ranking method for person
re-identification.
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Appendix: Proof of Equation (12)

Suppose there are Na
i images for person i under camera a and N b

j images for
person j under b. The number of positive matches for person i in both camera

views is Na
i N

b
i . Since the total numbers of images are

∑Ja

i=1 N
a
i under camera

view a and
∑Jb

j=1 N
b
j under camera view b, the positive prior τ is calculated by

τ =

∑J
i=1 N

a
i N

b
i∑Ja

i=1 N
a
i

∑Jb

j=1 N
b
j

(17)

The total number of image pairs in E1 is equal to the number of groups Gm· and

G·n, i.e.,
∑Ja

i=1 N
a
i +

∑Jb

j=1 N
b
j . There are

∑J
i=1 N

a
i groups Gm· and

∑J
j=1 N

b
j

groups G·n containing at least one positive ADV. However, the classification
function f may wrongly select a negative ADV from Gm· or G·n that contains
positive ADV(s). Thus, the number of ADVs in E1 is (

∑J
i=1 N

a
i +

∑J
j=1 N

b
j )c1,

where c1 is the rank one accuracy measuring the performance of f . Then, the
positive prior τ1 in E1 is given by the following equation,

τ1 =
(
∑J

i=1 N
a
i +

∑J
j=1 N

b
j )c1∑Ja

i=1 N
a
i +

∑Jb

j=1 N
b
j

(18)

Since it is difficult to compare τ and τ1 by (17) and (18) directly, we approximate

them by assuming Na
i ≈

∑Ja

i′=1 N
a
i′/J

a and N b
j ≈

∑Jb

j′=1 N
b
j′/J

b. Substituting

the approximations of Na
i and N b

j into (17) and (18), respectively, τ and τ1
become

τ =
J

JaJb
, τ1 =

( J
Ja

∑Ja

i=1 N
a
i + J

Jb

∑Jb

j=1 N
b
j )c1∑Ja

i=1 N
a
i +

∑Jb

j=1 N
b
j

≥ Jc1
max(Ja, Jb)

(19)

If max(1/Ja, 1/Jb) ≪ c1, multiplying JaJb on both sides, we obtain max(Ja, Jb) ≪
JaJbc1. Thus, τ ≪ τ1, which leads to (12).



Semi-Supervised Ranking for Re-Identification 15

References
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25. Bäuml, M., Tapaswi, M., Stiefelhagen, R.: Semi-supervised learning with con-
straints for person identification in multimedia data. In: CVPR. (2013)

26. Iqbal, U., Curcio, I.D.D., Gabbouj, M.: Who is the hero? - semi-supervised person
re-identification in videos. In: VISAPP. (2014)

27. Amini, M.R., Truong, T.V., Goutte, C.: A boosting algorithm for learning bipartite
ranking functions with partially labeled data. In: SIGIR. (2008)

28. Hoi, S.C., Jin, R.: Semi-supervised ensemble ranking. In: AAAI. (2008)
29. Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition,

reacquisition, and tracking. In: IEEE International Workshop on Performance
Evaluation for Tracking and Surveillance. (2007)

30. Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person re-identification by de-
scriptive and discriminative classification. In: SCIA. (2011)

31. Tian, Y., Zitnick, C., Narasimhan, S.: Exploring the spatial hierarchy of mixture
models for human pose estimation. In: ECCV. (2012)


